Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models

نویسندگان

  • Yarin Gal
  • Mark van der Wilk
  • Carl E. Rasmussen
چکیده

Gaussian processes (GPs) are a powerful tool for probabilistic inference over functions. They have been applied to both regression and non-linear dimensionality reduction, and offer desirable properties such as uncertainty estimates, robustness to over-fitting, and principled ways for tuning hyper-parameters. However the scalability of these models to big datasets remains an active topic of research. We introduce a novel re-parametrisation of variational inference for sparse GP regression and latent variable models that allows for an efficient distributed algorithm. This is done by exploiting the decoupling of the data given the inducing points to re-formulate the evidence lower bound in a Map-Reduce setting. We show that the inference scales well with data and computational resources, while preserving a balanced distribution of the load among the nodes. We further demonstrate the utility in scaling Gaussian processes to big data. We show that GP performance improves with increasing amounts of data in regression (on flight data with 2 million records) and latent variable modelling (on MNIST). The results show that GPs perform better than many common models often used for big data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured Variational Inference for Coupled Gaussian Processes

Sparse variational approximations allow for principled and scalable inference in Gaussian Process (GP) models. In settings where several GPs are part of the generative model, theses GPs are a posteriori coupled. For many applications such as regression where predictive accuracy is the quantity of interest, this coupling is not crucial. Howewer if one is interested in posterior uncertainty, it c...

متن کامل

Excess Risk Bounds for the Bayes Risk using Variational Inference in Latent Gaussian Models

Bayesian models are established as one of the main successful paradigms for complex problems in machine learning. To handle intractable inference, research in this area has developed new approximation methods that are fast and effective. However, theoretical analysis of the performance of such approximations is not well developed. The paper furthers such analysis by providing bounds on the exce...

متن کامل

Structured Variational Inference for Coupled Gaussian Processes

Sparse variational approximations allow for principled and scalable inference in Gaussian Process (GP) models. In settings where several GPs are part of the generative model, these GPs are a posteriori coupled. For many applications such as regression where predictive accuracy is the quantity of interest, this coupling is not crucial. Howewer if one is interested in posterior uncertainty, it ca...

متن کامل

Generic Inference in Latent Gaussian Process Models

We develop an automated variational method for inference in models with Gaussian process (gp) priors and general likelihoods. The method supports multiple outputs and multiple latent functions and does not require detailed knowledge of the conditional likelihood, only needing its evaluation as a black-box function. Using a mixture of Gaussians as the variational distribution, we show that the e...

متن کامل

Variational Inference for Sparse Spectrum Approximation in Gaussian Process Regression

Standard sparse pseudo-input approximations to the Gaussian process (GP) cannot handle complex functions well. Sparse spectrum alternatives attempt to answer this but are known to over-fit. We suggest the use of variational inference for the sparse spectrum approximation to avoid both issues. We model the covariance function with a finite Fourier series approximation and treat it as a random va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014